Я создала и активно наполняю телеграм-канал "Перець". Здесь лучшие карикатуры из журнала, начиная с 1922 года.
Заходите, подписывайтесь: https://t.me/cartalana
КАБАРДИН О.Ф. "ФИЗИКА (справочные материалы)", 1991
Необратимость тепловых процессов. При соприкосновении тел процесс теплопередачи происходит самопроизвольно от горячего тела к холодному до тех пор, пока оба тела не будут иметь одинаковые температуры. Все наблюдали, как налитый в чашку горячий чай постепенно остывает, нагревая окружающий воздух. Но никто не видел, чтобы теплый чай в чашке вдруг закипел за счет охлаждения окружающего его воздуха.
Процессы теплопередачи самопроизвольно осуществляются только в одном направлении, поэтому их называют необратимыми процессами.
Всегда осуществляется теплопередача тепла от горячего тела к холодному, потому что равномерное распределение быстрых и медленных молекул в двух соприкасающихся телах является более вероятным, чем такое распределение, при котором в одном теле будут только "быстрые" молекулы, а в другом - только "медленные".
Системы, состоящие из большого числа частиц, будучи предоставленные самим себе, самопроизвольно переходят из состояний менее вероятных в состояния более вероятные.
"Вечный двигатель второго рода". Для работы обычного теплового двигателя необходимо иметь нагреватель и холодильник. Очень заманчивой кажется задача создания тепловой машины, которая могла бы совершить механическую работу с использованием нагревателя.
Можно подсчитать, что при охлаждении Мирового океана только на 1 К можно получить энергию, достаточную для обеспечения всех потребностей человечества при современном уровне ее потребления на 14000 лет.
Возможность создания такой машины, называемой "вечным двигателем второго рода", не противоречит первому закону термодинамики. Однако все известные на сегодня результаты опытов свидетельствуют о том, что создание "вечного двигателя второго рода" является столь же неразрешимой задачей, как и изготовление "вечного двигателя первого рода". Этот опытный факт принят в термодинамике в качестве второго х основного постулата - второго закона термодинамики.
Теплопередача самопроизвольно происходит только в одном направлении - от горячего тела к холодному. Значит, чтобы энергия теплового движения молекул воды Мирового океана превратилась в механическую энергию, необходимо иметь рабочее тело, температура которого ниже температуры воды в океане.
Второй закон термодинамики. Второй закон термодинамики имеет несколько эквивалентных по своему физическому содержанию формулировок. Приведем две из них.
Неосуществим термодинамический процесс, в результате которого происходила бы передача тепла от одного тела к другому, более горячему, без каких-либо других изменений в природе.
Невозможно построить периодически действующую машину, которая непрерывно превращала бы теплоту в работу только за счет охлаждения одного тела, без того чтобы в окружающих телах не произошло одновременно каких-либо изменений.
Физический смысл второго закона термодинамики заключается в том, что энергия теплового движения молекул вещества в одном отношении качественно отличается от всех других видов энергии - механической, электрической, химической, ядерной и т.д. Это отличие заключается в том, что энергия любого вида, кроме энергии теплового движения молекул, может полностью превратиться в любой другой вид энергии, в том числе в энергию теплового движения. Энергия же теплового движения молекул может испытать превращение в любой другой вид энергии лишь частично. В результате этого любой физический процесс, в котором происходит превращение какого-либо вида энергии в энергию теплового движения молекул, является необратимым процессом, т.е. он не может быть осуществлен полностью в обратном направлении.
Холодильник. Не опровергает ли второй закон термодинамики работа холодильника? Действие его как раз заключается в том, что от более холодного тела, находящегося в морозильнике, отнимается некоторое количество теплоты и передается более нагретому телу. Этим более нагретым телом является: воздух в комнате, который в результате работы холодильника нагревается до еще более высокой температуры от конденсатора, обычно укрепленного на задней стенке холодильного шкафа.
Работа холодильника совершается не в противоречии со вторым законом термодинамики, а в полном соответствии с ним. Холодильник и воздух комнаты не составляют замкнутой системы. Холодильник необходимо подключить к электрической сети. Электрическая энергия с помощью электродвигателя превращается в механическую энергию, затем механическая энергия в результате работы компрессора холодильника превращается в конечном счете в энергию теплового движения молекул деталей холодильника и окружающих его тел. Следовательно, переход тепла от холодного тела к горячему не является единственным результатом работы холодильника, так как сопровождается превращением энергии электрического тока в энергию теплового движения.
Рабочим телом в домашнем компрессионном холодильнике (рис. 115) служит газ фреон. Фреоном заполнена система конденсатора и испарителя. Компрессор, приводимый в действие электродвигателем, откачивает газообразный фреон из испарителя и нагнетает его в конденсатор. При сжижении фреон нагревается. Охлаждение его до комнатной температуры производится в конденсаторе, расположенном обычно на задней стенке холодильного шкафа. Охлажденный до комнатной температуры при повышенном давлении, создаваемом в конденсаторе с помощью компрессора, фреон переходит в жидкое состояние. Из конденсатора жидкий фреон через капиллярную трубку поступает в испаритель. Откачкой паров фреона из испарителя с помощью компрессора в нем поддерживается пониженное давление. При пониженном давлении в испарителе жидкий фреон кипит и испаряется даже при температуре ниже 0 °С. Теплота на испарение фреона отбирается от стенок испарителя, вызывая их охлаждение. Откачанные пары фреона поступают в кожух компрессора, оттуда - снова в конденсатор и т.д. по замкнутому циклу.
Рис. 115
Самая низкая температура, которая может быть получена в испарителе (морозильной камере), определяется значением давления паров фреона, так как температура кипения фреона, как и любой другой жидкости, понижается с понижением давления. При постоянной скорости поступления жидкого фреона из конденсатора в испаритель через капиллярную трубку давление паров фреона в испарителе будет тем ниже, чем дольше работает компрессор. Если нет нужды добиваться понижения температуры в испарителе до предельно достижимого значении, то работа компрессора периодически останавливается путем выключения электромотора, приводящего его в действие. Компрессор выключается автоматом, следящим за поддержанием в холодильном шкафу заданной температуры.
Рабочий цикл холодильной машины. Некоторые тепловые машины можно с помощью другого двигателя, например электромотора, заставить совершать цикл в обратном направлении. В обратных процессах (циклах) холодильником по-прежнему называют тело с более низкой температурой, хотя оно теперь отдает тепло, а нагревателем - тело, имеющее более высокую температуру, хотя теперь оно его получает. При этом рабочее тело будет получать за один цикл от холодильника количество теплоты , отдавая нагревателю количество теплоты , которое больше на величину работы , совершаемой электромотором:
.
Можно сказать, что в данном случае тепловая машина производит отрицательную работу:
.
В результате проведения обратного цикла увеличивается разность температур между нагревателем и холодильником. В этих условиях тепловая машина работает как "тепловой насос". За счет работы, совершаемой электромотором, машина переносит количество теплоты % от холодного тела к горячему.
Паровая машина. Первые практически действующие универсальные паровые машины были созданы русским изобретателем Иваном Ивановичем Ползуновым и англичанином Джемсом Уаттом.
В машине Ползунова из котла по трубам пар с давлением, немного превышающим атмосферное, поступал поочередно в два цилиндра с поршнями. Для улучшения уплотнения поршни заливались водой. Посредством тяг с цепями движение поршней передавалось мехам для трех медеплавильных печей.
Постройка машины Ползунова была закончена в августе 1766 г. Она имела высоту 11 м, емкость котла 7 м3, высоту цилиндров 2,8 м, мощность 29 кВт.
Машина Ползунова создавала непрерывное усилие и была первой универсальной машиной, которую можно было применять для приведения в движение любых заводских механизмов.
В паровой машине Д. Уатта два цилиндра были заменены одним закрытым. Пар поступал попеременно по обе стороны поршня, толкая его то в одну, то в другую сторону. В такой машине двойного действия отработавший пар конденсировался не в цилиндре, а в отдельном от него сосуде - конденсаторе. Постоянство числа оборотов маховика поддерживалось центробежным регулятором. Разработка парового двигателя была завершена Д. Уаттом в 1784 г.
Главным недостатком первых паровых машин был низкий КПД. У паровозов КПД не превышал 9%.
Паровая турбина и ТЭЦ. Значительного повышения КПД удалось достигнуть в результате изобретения паровой турбины.
Первая паровая турбина, нашедшая практическое применение, была изготовлена шведским инженером Густавом Лавалем в 1889 г. Для работы паровой турбины за счет энергии, освобождаемой при сжигании каменного угля или мазута, вода в котле нагревается и превращается в пар. Пар нагревается до температуры более 500 °С и при высоком давлении выпускается из котла через сопло. При выходе пара внутренняя энергия нагретого пара преобразуется в кинетическую энергию струи пара. Скорость струи пара может достигнуть 1000 м/с. Струя пара направляется на лопатки турбины и приводит турбину во вращение. На одном валу с турбиной находится ротор электрического генератора. Таким образом энергия топлива в конечном счете преобразуется в электрическую энергию.
Современные паровые турбины обладают высоким КПД преобразования кинетической энергии струи пара в механическую энергию, превышающим 90%. Поэтому электрические генераторы практически всех тепловых и атомных электростанций мира, дающие более 80% всей вырабатываемой электроэнергии, приводятся в действие паровыми турбинами.
Температура пара, применяемого в современных паротурбинных установках, не превышает 580 °С (температура нагревателя = 853 К), а температура пара на выходе из турбины обычно не ниже 30 °С (температура холодильника = 303 К); поэтому максимальное значение КПД паротурбинной установки как тепловой машины равно
,
а реальные значения КПД паротурбинных конденсационных электростанций составляют лишь около 40%.
Мощность современных энергоблоков котел - турбина - генератор достигает 1,2·106 кВт.
Для повышения КПД на многих электростанциях тепло, отбираемое от паровой турбины, используется для нагревания воды. Горячая вода поступает в систему бытового и промышленного теплоснабжения.
Коэффициент полезного использования топлива в такой теплоэлектроцентрали (ТЭЦ) повышается до 60-70%.
Тепловые машины и транспорт. Различные виды тепловых машин являются основой современного транспорта. Тепловые машины приводят в движение автомобили и тепловозы, речные и морские корабли, самолеты и космические ракеты. Одной из наиболее распространенных тепловых машин, используемых в различных транспортных средствах, является двигатель внутреннего сгорания.
Двигатель внутреннего сгорания. Среди способов увеличения КПД тепловых двигателей один оказался особенно эффективным. Сущность его состояла в устранении части потерь теплоты перенесением места сжигания топлива и нагревания рабочего тела внутрь цилиндра.
Отсюда и происхождение названия - "двигатель внутреннего сгорания".
Первый двигатель внутреннего сгорания был создан в 1860 г. французским инженером Этьеном Ленуаром, но эта машина была еще весьма несовершенной.
В 1862 г. французский изобретатель Бо де Роша предложил использовать в двигателе внутреннего сгорания четырехтактный цикл: 1) всасывание; 2) сжатие; 3) горение и расширение; 4) выхлоп. Эта идея была использована немецким изобретателем Н. Отто, построившим в 1878 г. первый четырехтактный газовый двигатель внутреннего сгорания. КПД этого двигателя достигал 22%, что превосходило значения, полученные при использовании двигателей всех предшествующих типов.
Развитие нефтяной промышленности в конце XIX в. дало новые виды топлива - керосин и бензин. В бензиновом двигателе для более полного сгорания топлива перед впуском в цилиндр его смешивают с воздухом в специальных смесителях, называемых карбюраторами. Воздушно-бензиновую смесь называют горючей смесью.
Рис. 116
Для полного сгорания в составе смеси на один килограмм бензина должно приходиться не менее пятнадцати килограммов воздуха. Это означает, что рабочим телом в двигателях внутреннего сгорания фактически является воздух, а не пары бензина. В отличие от паровых машин здесь топливо сжигается для нагревания газа, а не для превращения жидкости в пар. Правда, наряду с нагреванием воздуха происходит и частичное изменение его состава: вместо молекул кислорода появляется несколько большее количество молекул углекислого газа и водяного пара. Азот, составляющий более 3/4 воздуха, испытывает лишь нагревание.
Рис. 117
При движении поршня от верхнего положения до нижнего через впускной клапан происходит засасывание горючей смеси в цилиндр (рис. 116). Этот процесс происходит при постоянном давлении. При обратном ходе поршня начинается сжатие горючей смеси. Сжатие происходит быстро, и поэтому процесс близок к адиабатическому. На диаграмме ему соответствует участок 𝐴𝐵 (рис. 117).
В конце такта сжатия происходит воспламенение горючей смеси электрической искрой. Быстрое сгорание паров бензина сопровождается передачей рабочему телу - воздуху - количества тепла, резким возрастанием температуры, давления воздуха и продуктов сгорания. За короткое время горения смеси поршень практически не изменяет своего положения в цилиндре, поэтому процесс нагревания газа в цилиндре можно считать изохорическим и изобразить его на диаграмме участком 𝐵𝐶.
Под действием давления горячих газов поршень совершает рабочий ход, газы адиабатически расширяются от объема до объема ; этому процессу соответствует на диаграмме адиабата 𝐶𝐷.
В конце рабочего такта открывается выпускной клапан и рабочее тело соединяется с окружающей атмосферой. Выпуск отработанных газов сопровождается передачей количества тепла окружающему воздуху, играющему роль охладителя.
Для поршневых двигателей внутреннего сгорания важной характеристикой, определяющей полноту сгорания топлива и значительно влияющей на величину КПД, является степень сжатия горючей смеси:
,
где и - объемы в начале и в конце сжатия. С увеличением степени сжатия возрастает начальная температура горючей смеси в конце такта сжатия, что способствует более полному ее сгоранию. В карбюраторных двигателях увеличению степени сжатия выше 8-9 препятствует самовоспламенение (детонация) горючей смеси, происходящее еще до того, как поршень достигнет верхней мертвой точки. Это явление оказывает разрушающее действие на двигатель и снижает его мощность и КПД. Достигнуть высоких степеней сжатия без детонации удалось увеличением скорости движения поршня при повышении числа оборотов двигателя до 5-6 тыс. об/мин и применением бензина со специальными антидетонационными присадками.
Карбюраторные двигатели внутреннего сгорания широко применяются в автомобильном транспорте. Они приводят в движение почти все легковые и многие грузовые автомобили.
Двигатель Дизеля. Для дальнейшего повышения КПД двигателя внутреннего сгорания в 1892 г. немецкий инженер Рудольф Дизель предложил использовать еще большие степени сжатия рабочего тела.
Высокая степень сжатия без детонации достигается в двигателе Дизеля за счет того, что сжатию подвергается не горючая смесь, а только воздух. По окончании процесса сжатия в цилиндр впрыскивается горючее. Дли его зажигания не требуется никакого специального устройства, так как при высокой степени адиабатического сжатия воздуха его температура повышается до 600-700 °С. Горючее, впрыскиваемое с помощью топливного насоса через форсунку, воспламеняется при соприкосновении с раскаленным воздухом.
Подача топлива управляется особым регулятором, в результате чего процесс горения протекает не столь кратковременно, как в карбюраторном двигателе, а происходит изобарно, а затем адиабатно. При обратном движении поршня осуществляется выхлоп. Диаграмма цикла в двигателе Дизеля представлена на рисунке 118.
Рис. 118
Современные дизели имеют степень сжатия = 16-21 и КПД около 40%. Более высокий коэффициент полезного действия дизельных двигателей обусловлен тем, что вследствие более высокой степени сжатия начальная температура горения смеси (480-630 °С) у них выше, чем у карбюраторных двигателей (330-480 °С). Этим обеспечивается более полное сгорание дизельного топлива. Дизельные двигатели используются в мощных грузовых автомобилях, тракторах, на судах речного и морского транспорта, тепловозах.
Газовая турбина. Все более широкое применение в современном транспорте получают газотурбинные двигатели. Газотурбинная установка состоит из воздушного компрессора 1, камер сгорания 2 и газовой турбины 3 (рис. 119). Компрессор состоит из ротора, укрепленного на одной оси с турбиной, и неподвижного направляющего аппарата.
Рис. 119
При работе турбины ротор компрессора вращается. Лопатки ротора имеют такую форму, что при их вращении давление перед компрессором понижается, а за ним повышается. Воздух засасывается в компрессор, несколько ступеней лопаток компрессора обеспечивают повышение давления воздуха в 5-7 раз.
Процесс сжатия протекает адиабатно, поэтому температура воздуха повышается до температуры 200 °С и более.
Сжатый воздух поступает в камеру сгорания. Одновременно через форсунку в нее впрыскивается под большим давлением жидкое топливо - керосин, мазут.
При горении топлива воздух, служащий рабочим телом, получает некоторое количество тепла и нагревается до температуры 1500-2200 °С. Нагревание воздуха происходит при постоянном давлении, поэтому воздух расширяется и скорость его движения увеличивается.
Движущийся с большой скоростью воздух и продукты горения направляются в турбину. Переходя от ступени к ступени, они отдают свою кинетическую энергию лопаткам турбины. Часть полученной турбиной энергии расходуется на вращение компрессора, а остальная используется для вращения винта самолета, винта морского корабля или колес автомобиля.
Вместо вращения винта самолета, теплохода или ротора электрогенератора газовая турбина может быть использована как реактивный двигатель. Воздух и продукты горения выбрасываются из газовой турбины с большой скоростью. Реактивная сила тяги, возникшая при этом, может быть использована для движения самолета, теплохода или железнодорожного транспорта.
Турбореактивными двигателями оборудованы известные всему миру самолеты ИЛ-62, ТУ-154.
Тепловые машины и охрана окружающей среды. Непрерывное развитие энергетики, автомобильного и других видов транспорта, возрастание потребления угля, нефти и газа в промышленности и на бытовые нужды увеличивает возможности удовлетворения жизненных потребностей человека. Однако в настоящее время количество ежегодно сжигаемого в различных тепловых машинах химического топлива настолько велико, что все более сложной проблемой становится охрана окружающей среды от вредного влияния продуктов сгорания.
Отрицательное влияние тепловых машин на окружающую среду связано с действием разных факторов.
Во-первых, при сжигании топлива используется кислород из атмосферного воздуха, поэтому содержание кислорода в воздухе постепенно уменьшается. Если в СССР пока количество кислорода, производимого лесами, превышает количество кислорода, потребляемого промышленностью, то, например, в США леса восстанавливают лишь 60% используемого промышленностью кислорода.
Во-вторых, сжигание топлива сопровождается выделением в атмосферу углекислого газа. За последние двадцать лет содержание углекислого газа в атмосфере Земли увеличилось примерно на 5%.
Молекулы оксида углерода способны поглощать инфракрасное излучение. Поэтому увеличение содержания углекислого газа в атмосфере изменяет ее прозрачность. Инфракрасное излучение, испускаемое земной поверхностью, все в большей мере поглощается в атмосфере. Дальнейшее существенное увеличение концентрации углекислого газа в атмосфере может привести к повышению ее температуры.
В-третьих, при сжигании угля и нефти атмосфера загрязняется азотными и серными соединениями, вредными для здоровья человека. Особенно существенно это загрязнение в крупных городах и промышленных центрах.
Более половины всех загрязнений атмосферы создает транспорт. Кроме оксида углерода и соединений азота, автомобильные двигатели ежегодно выбрасывают в атмосферу 2-3 млн. т свинца. Соединения свинца добавляют в автомобильный бензин для предотвращения детонации топлива в двигателе, т.е. слишком быстрого сгорания топлива.
Один из путей уменьшения загрязнения окружающей среды - переход от использования в автомобилях карбюраторных бензиновых двигателей к использованию дизельных двигателей, в топливо которых не добавляют соединения свинца.
Формулы
Основы молекулярно-кинетической теории
.
Давление идеального газа
.
Энергия молекул и температура
.
Уравнение состояния идеального газа
.
Внутренняя энергия одноатомного идеального газа
Первый закон термодинамики
.
КПД теплового двигателя
.
Теплообмен
.
Обозначения
Обозначения | Единицы и значения величин |
- число молекул | |
- масса вещества | 1 кг |
- масса молекулы | |
- количество вещества | 1 моль |
- постоянная Авогадро | = 6,22·1023моль-1 |
- давление | 1 Па |
- концентрация молекул | 1 м-3 |
- среднее значение квадрата скорости молекул | |
- среднее значение кинетической энергии теплового движения молекул | |
- температура по шкале Цельсия | 1 °С |
- абсолютная температура | 1 К |
- постоянная Больцмана | = 1,38·10-23 Дж·К-1 |
- объем | 1 м |
- молярная газовая постоянная (универсальная газовая постоянная) | = 8,31 Дж·моль-1·К-1 |
- внутренняя энергия | Дж |
- количество теплоты | Дж |
- работа, совершенная внешними силами над системой | Дж |
- работа, совершенная системой над внешними телами | |
- коэффициент полезного действия (КПД) | |
- количество теплоты, полученной от нагревателя | |
- количество теплоты, отданной холодильнику | |
- удельная теплоемкость | 1 Дж/(кг·К) |
- удельная теплота парообразования | 1 Дж/кг |
- удельная теплота плавления | 1 Дж/кг |
⇦ Ctrl предыдущая страница / следующая страница Ctrl ⇨
МЕНЮ САЙТА / СОДЕРЖАНИЕ