Я создала и активно наполняю телеграм-канал "Перець". Здесь лучшие карикатуры из журнала, начиная с 1922 года.
Заходите, подписывайтесь: https://t.me/cartalana

КАБАРДИН О.Ф. "ФИЗИКА (справочные материалы)", 1991

МЕНЮ САЙТА / СОДЕРЖАНИЕ

44. ЭЛЕКТРИЧЕСКИЙ ТОК В МЕТАЛЛАХ

Природа электрического тока в металлах. Все металлы в твердом и жидком состоянии являются проводниками электрического тока. Специально поставленные опыты показали, что при прохождении электрического тока масса металлических проводников остается постоянной, не изменяется и их химический состав. На этом основании можно было предположить, что в создании электрического тока в металлах участвуют только электроны. Предположение об электронной природе электрического тока в металлах подтверждено опытами советских физиков Л.И. Мандельштама и Н.Д. Папалекси и американских физиков Т. Стюарта и Р. Толмена. В этих опытах было обнаружено, что при резкой остановке быстро вращающейся катушки в проводе катушки возникает электрический ток, создаваемый отрицательно заряженными частицами - электронами.

При отсутствии электрического поля свободные электроны перемещаются в кристалле металла хаотически. Под действием электрического поля свободные электроны, кроме хаотического движения, приобретают упорядоченное движение в одном направлении, и в проводнике возникает электрический ток. Свободные электроны сталкиваются с ионами кристаллической решетки, отдавая им при каждом столкновении кинетическую энергию, приобретенную при свободном пробеге под действием электрического поля. В результате упорядоченное движение электронов в металле можно рассматривать как равномерное движение с некоторой постоянной скоростью .

Так как кинетическая энергия электронов, приобретаемая под действием электрического поля, передается при столкновении ионами кристаллической решетки, то при прохождении постоянного тока проводник нагревается.

Зависимость удельного электрического сопротивления металлов от температуры. Удельное сопротивление металлов при нагревании увеличивается приблизительно по линейному закону (рис. 152):

Рис. 152-153

, (44.1)

где - удельное электрическое сопротивление металла при температуре , - его удельное сопротивление при 0 °С, - температурный коэффициент сопротивления, особый для каждого металла.

С приближением температуры к абсолютному нулю удельное сопротивление монокристаллов становится очень малым. Этот факт свидетельствует о том, что в идеальной кристаллической решетке металла электроны перемещаются под действием электрического поля, не взаимодействуя с ионами решетки. Длина их свободного пробега при этом может достигать значений, порядка 1 см, т.е. в 107-108 раз превышает межатомные расстояния в кристалле. Электроны взаимодействуют лишь с ионами, не находящимися в узлах кристаллической решетки.

При повышении температуры возрастает число дефектов в кристаллической решетке из-за тепловых колебаний ионов, - это приводит к возрастанию удельного сопротивления кристалла.

В том, что электрическое сопротивление металлов обусловлено взаимодействиями электронов проводимости с различными дефектами решетки, убеждает и тот факт, что удельное сопротивление кристаллов металлов сильно зависит от наличия в них примесей. Например, введение 1% примеси марганца увеличивает удельное сопротивление меди в три раза.

Сверхпроводимость. В 1911 г. нидерландский ученый Гейке Камерлинг-Оннес (1853-1926) обнаружил, что при понижении температуры ртути до 4,1 К ее удельное сопротивление скачком уменьшается до нуля (рис. 153). Явление уменьшения удельного сопротивления до нуля при температуре, отличной от абсолютного нуля, называется сверхпроводимостью. Материалы, обнаруживающие способность переходить при некоторых температурах, отличных от абсолютного нуля, в сверхпроводящее состояние, называются сверхпроводниками.

Прохождение тока в сверхпроводнике происходит без потерь энергии, поэтому однажды возбужденный в сверхпроводящем кольце электрический ток может существовать неограниченно долго без изменения.

Сверхпроводящие материалы уже используются в электромагнитах. Ведутся исследования, направленные на создание сверхпроводящих линий электропередачи.

Применение явления сверхпроводимости в широкой практике может стать реальностью в ближайшие годы благодаря открытию в 1986 г. сверхпроводимости керамик - соединений лантана, бария, меди и кислорода. Сверхпроводимость таких керамик сохраняется до температур около 100 К.

Скорость упорядоченного движения электронов в проводнике. Для определения скорости упорядоченного движения свободных электрических зарядов в проводнике нужно знать концентрацию свободных носителей заряда и силу тока . Если концентрация свободных электрических зарядов в проводнике , то за промежуток времени через поперечное сечение проводника при скорости их упорядоченного движения проходит электрический заряд , равный

,

где - модуль заряда электрона.

Сила тока в проводнике при этом равна

.

Из последнего уравнения скорость упорядоченного движения электронов в проводнике получается равной

.

Концентрация свободных электронов в металлах примерно равна концентрации атомов, модуль заряда электрона = 1,6·10-19 Кл. Для проводника с площадью поперечного сечения = 1 мм2 = 10·6 м-2 при силе тока = 1 А скорость упорядоченного движения электронов равна

.

За 1 с электроны в проводнике перемещаются за счет упорядоченного движения меньше чем на 0,1 мм.

Малые значения скорости упорядоченного движения свободных зарядов в проводниках не приводят к запаздыванию зажигания электрических ламп, включения электромоторов и т.д., так как при включении электрической цепи вдоль проводов со скоростью света распространяется электромагнитное поле. Это поле приводит в движение свободные электрические заряды почти одновременно во всех проводниках электрической цепи.

45. ЭЛЕКТРИЧЕСКИЙ ТОК В ПОЛУПРОВОДНИКАХ

Многие вещества в кристаллическом состоянии не являются такими хорошими проводниками электрического тока, как металлы, но не могут быть отнесены и к диэлектрикам, так как не являются хорошими изоляторами.

Такие вещества долгое время не привлекали особого внимания ученых и инженеров.

Одним из первых начал систематические исследования физических свойств таких веществ, называемых сегодня полупроводниками, выдающийся советский физик Абрам Федорович Иоффе.

Полупроводники оказались не просто "плохими проводниками", а особым классом кристаллов со многими замечательными физическими свойствами, отличающими их как от металлов, так и от диэлектриков.

Если у металлов с повышением температуры удельное сопротивление увеличивается, то у полупроводников уменьшается. Уменьшается удельное сопротивление полупроводниковых кристаллов и при освещении.

Но самым удивительным свойством полупроводников оказалось свойство односторонней проводимости контакта двух полупроводниковых кристаллов различного типа. Это свойство используется при создании разнообразных полупроводниковых приборов, служащих материальной базой современной радиоэлектроники, автоматики и вычислительной техники.

Собственная проводимость полупроводников. Обычно к полупроводникам относят кристаллы, в которых для освобождения электрона требуется энергия не более 1,5-2 эВ. Кристаллы с большими значениями энергии связи относятся к диэлектрикам.

Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены ковалентной связью. При температуре около 300 К средняя энергия теплового движения атомов в полупроводниковом кристалле составляет около 0,04 эВ. Это значительно меньше энергии, необходимой для отрыва валентного электрона, например, от атома кремния (1,1 эВ). Однако вследствие неравномерного распределения энергии теплового движения некоторые атомы кремния ионизируются (рис. 154).

Рис. 154

Освободившиеся электроны не могут быть захвачены соседними атомами, так как все их валентные связи насыщены. Свободные электроны под действием внешнего электрического поля могут перемещаться в кристалле, создавая электронный ток проводимости.

Удаление электрона с внешней оболочки одного из атомов кристаллической решетки приводит к превращению этого атома в положительный ион. Этот ион может нейтрализоваться, захватив электрон у одного из соседних атомов. Далее, в результате переходов электронов от атомов к положительным ионам происходит процесс хаотического перемещения в кристалле места с недостающим электроном. Внешне этот процесс воспринимается как перемещение положительного электрического заряда, называемого дыркой. При помещении кристалла в электрическое поле возникает упорядоченное движение дырок - дырочный ток проводимости.

В идеальном полупроводниковом кристалле электрический ток создается движением равного количества отрицательно заряженных электронов и положительно заряженных дырок. Такой тип проводимости называется собственной проводимостью полупроводника.

Концентрация носителей заряда в полупроводниках при комнатной температуре значительно меньше, чем в металлах. Поэтому удельное сопротивление полупроводников обычно больше, чем металлов. При понижении температуры удельное сопротивление полупроводника увеличивается - он все больше становится похожим на диэлектрик.

Донорные и акцепторные примеси. Свойства полупроводников сильно зависят от содержания примесей. Примеси бывают двух типов - донорные и акцепторные. Если, например, в кристалле кремния имеется примесь атомов мышьяка, то эти атомы замещают в узлах кристаллической решетки атомы кремния. Пятивалентный атом мышьяка вступает в ковалентные связи с четырьмя атомами кремния, а его пятый электрон оказывается незанятым в связях (рис. 155).

Рис. 155

Энергия, необходимая для разрыва связи пятого валентного электрона с атомом мышьяка в кристалле кремния, мала. Поэтому при комнатной температуре почти все атомы мышьяка лишаются одного из своих электронов и становятся положительными ионами.

Положительный ион мышьяка не может захватить электрон у одного из соседних атомов кремния, так как энергия связи электронов с атомами кремния значительно превышает энергию связи пятого валентного электрона с атомом мышьяка. Поэтому эстафетного перемещения электронной вакансии не происходит, дырочной проводимости нет. Примеси, поставляющие электроны проводимости без возникновения такого же числа дырок, называются донорными.

В полупроводниковом кристалле, содержащем донорные примеси, электроны являются основными, но не единственными носителями тока, так как небольшая часть собственных атомов полупроводникового кристалла ионизована и часть тока осуществляется дырками. Полупроводниковые материалы, в которых электроны служат основными носителями заряда, а дырки - неосновными, называются электронными полупроводниками или полупроводниками -типа.

Если в кристалле кремния часть атомов замещена атомами трехвалентного элемента, например индия, то атом индия может осуществлять связь только с тремя соседними атомами, а связь с четвертым атомом осуществляется лишь одним электроном. При этих условиях атом индия захватывает электрон у одного из соседних атомов кремния и становится отрицательным ионом. Захват электрона от одного из атомов кремния приводит к возникновению дырки. Примеси, захватывающие электроны и создающие тем самым подвижные дырки, не увеличивая при этом число электронов проводимости, называют акцепторными (рис. 156).

Рис. 156

При низких температурах основными носителями тока в полупроводниковом кристалле с акцепторной примесью являются дырки, а неосновными носителями - электроны. Полупроводники, в которых концентрация дырок превышает концентрацию электронов проводимости, называют дырочными полупроводниками или полупроводниками -типа.

Полупроводниковые материалы - и -типа широко используются при изготовлении полупроводниковых приборов.

46. ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ

Зависимость удельного сопротивления полупроводников от температуры и освещения. Опыты показывают, что при нагревании электрическое сопротивление полупроводниковых кристаллов уменьшается (рис. 157). Уменьшение электрического сопротивления полупроводников при нагревании объясняется тем, что с повышением температуры кристалла число освобождающихся электронов увеличивается, концентрация свободных электронов в кристалле возрастает.

Рис. 157

Зависимость электрического сопротивления полупроводниковых материалов от температуры используется в специальных полупроводниковых приборах - терморезисторах.

Устройство терморезисторов. Для изготовления терморезисторов применяются полупроводниковые материалы, являющиеся смесью оксидов некоторых металлов - титана, магния, никеля, лития, марганца, кобальта. Полупроводниковое вещество помещается в металлический защитный чехол, в котором имеются изолированные выводы для включения терморезистора в электрическую цепь. Некоторые терморезисторы не имеют специальной защитной оболочки, полупроводниковый материал в них лишь покрыт слоем лака. Изменение сопротивления терморезисторов при нагревании или охлаждении позволяет использовать их в приборах для измерения температуры, для поддержания постоянной температуры в автоматических устройствах - в закрытых камерах-термостатах.

Фоторезисторы. Опыты показывают, что электрическое сопротивление полупроводниковых кристаллов изменяется не только при их нагревании, но и при освещении. При увеличении освещения электрическое сопротивление полупроводниковых материалов уменьшается. Это означает, что энергия, необходимая для освобождения электронов и дырок, может быть передана им светом, падающим на кристалл. Приборы, в которых используется свойство полупроводниковых кристаллов изменять свое электрическое сопротивление при освещении светом, называются фоторезисторами. Фоторезисторы изготавливаются в виде тонких слоев полупроводникового вещества, нанесенных на подложку изолятора. Материалами для изготовления фоторезисторов служат соединения типа CdS, CdSe, PbS и ряд других.

Свойства -перехода. Полупроводниковые приборы являются основой современной электронной техники. Они применяются в радиоприемниках и телевизорах, микрокалькуляторах и электронных вычислительных машинах. Принцип действия большинства полупроводниковых приборов основан на использовании свойств -перехода.

Для создания -перехода в кристалле с электронной проводимостью нужно создать область с дырочной проводимостью или в кристалле с дырочной проводимостью - область с электронной проводимостью.

Такая область создается введением примеси в процессе выращивания кристалла или введением атомов примеси в готовый кристалл. Через границу, разделяющую области кристалла с различными типами проводимости, происходит диффузия электронов и дырок (рис. 158,а).

Рис. 158,а

Диффузия электронов из -полупроводника в -полупроводник приводит к появлению в электронном проводнике нескомпенсированных положительных ионов донорной примеси, в дырочном полупроводнике рекомбинация электронов с дырками приводит к появлению нескомпенсированных зарядов отрицательных ионов акцепторной примеси (рис. 158,б). Между двумя слоями объемного заряда возникает электрическое поле. По мере накопления объемного заряда напряженность поля возрастает, и оно оказывает все большее противодействие переходам электронов из -полупроводника в -полупроводник или дырок из -полупроводника в -полупроводник. Электронно-дырочный переход, или сокращенно -переход, является границей, разделяющей области с дырочной ( ) и электронной ( ) проводимостями в одном монокристалле.

Рис. 158,б

Пограничная область раздела полупроводников с различным типом проводимости в связи с уходом свободных электронов и дырок практически превращается в диэлектрик.

Между областями с различным типом проводимости объемные заряды ионов создают напряжение ; его значение для германиевых -переходов равно примерно 0,35 В; для кремниевых - около 0,6 В.

Если к -переходу приложено напряжение знаком плюс на область с электронной проводимостью, то электроны в -полупроводнике и дырки в -полупроводнике удаляются внешним полем от запирающего слоя в разные стороны, увеличивая его толщину. Сопротивление -перехода велико, сила тока мала и практически не зависит от напряжения. Этот способ включения диода называется включением в запирающем или в обратном направлении. Обратный ток полупроводникового диода обусловлен собственной проводимостью полупроводниковых материалов, из которых изготовлен диод, т.е. наличием небольшой концентрации свободных электронов в -полупроводнике и дырок в -полупроводнике.

Если к -переходу приложено напряжение знаком плюс на область с дырочной проводимостью и знаком минус на область с электронной проводимостью, то переходы основных носителей через -переход облегчаются. Двигаясь навстречу друг другу, основные носители входят в запирающий слой, уменьшая его удельное сопротивление. Сила тока через диод в этом случае при напряжениях, превышающих , ограничивается лишь сопротивлением внешней электрической цепи. Этот способ включения диода называется включением в пропускном или в прямом направлении.

Способность -перехода пропускать ток в одном направлении и не пропускать его в противоположном направлении используется в приборах, называемых полупроводниковыми диодами, для преобразования переменного тока в постоянный, точнее в пульсирующий, ток.

Достоинством полупроводникового диода являются малые размеры и масса, длительный срок службы, высокая механическая прочность, высокий коэффициент полезного действия, а недостатком - зависимость их параметров от температуры.

Транзистор. Транзистор, или полупроводниковый триод, был изобретен в 1948 г. По способу изготовления транзистор очень мало отличается от полупроводникового диода.

Для изготовления транзистора из монокристалла германия с электронной проводимостью в него с двух противоположных сторон вводится примесь атомов индия. Две области монокристалла германия с примесью индия становятся полупроводниками с дырочной проводимостью, а на границах соприкосновения их с основным кристаллом возникают два -перехода. Средняя область кристалла называется базой транзистора, а две крайние области кристалла, обладающие проводимостью противоположного базе типа, называются коллектором и эмиттером (рис. 159). Транзисторы, в которых эмиттер и коллектор обладают дырочной проводимостью, а база - электронной, называются транзисторами -перехода.

Рис. 159

Транзисторы -перехода имеют аналогичное устройство - только материал базы в них обладает дырочной проводимостью, а коллектор и эмиттер - электронной. Условное обозначение транзистора на схемах представлено на рисунке 160.

Рис. 160

Включение транзистора в электрическую цепь. Для приведения в действие на коллектор транзистора типа подают напряжение отрицательной полярности относительно эмиттера. Напряжение на базе может быть как положительным, так и отрицательным по отношению к эмиттеру.

Основным рабочим состоянием транзистора в большинстве электрических схем является активное состояние, при котором к эмиттерному -переходу приложено напряжение в пропускном направлении, а к коллекторному - в запирающем направлении. При этом эмиттерный -переход открывается и из эмиттера в базу переходят дырки.

Путем диффузии дырки распространяются из области с высокой концентрацией вблизи эмиттера в область с низкой концентрацией к коллектору. Дырки, достигающие коллекторного -перехода, втягиваются его полем и переходят в коллектор.

Небольшая доля дырок, движущихся от эмиттера к коллектору (1-5%), встречает на своем пути через базу электроны и рекомбинирует с ними. Убыль электронов в базе за счет рекомбинации восполняется приходом электронов через базовый вывод. Таким образом, ток, протекающий через эмиттерный вывод транзистора в активном состоянии , оказывается равным сумме токов, протекающих через его коллекторный и базовый выводы:

(46.1)

Соотношение между токами коллектора и базы транзистора в активном состоянии определяется условиями диффузии и рекомбинации дырок в базе. Эти условия сильно зависят от типов использованных для изготовления транзисторов материалов и конструкции их электродов, но очень слабо зависят от коллекторного и базового напряжений. Поэтому транзистор можно рассматривать как устройство, распределяющее ток, протекающий через один из его электродов - эмиттер, в заданном соотношении между двумя другими электродами - базой и коллектором (рис. 161).

Рис. 161

Усилительные свойства транзистора. Способность транзистора распределять ток эмиттера в заданном соотношении между коллектором и базой может быть использована для усиления электрических сигналов. Отношение изменения силы тока в цепи коллектора к изменению тока в цепи базы при постоянном напряжении на коллекторе для каждого транзистора есть величина постоянная, называемая интегральным коэффициентом передачи базового тока :

(46.2)

Для транзисторов различных типов значение этого коэффициента лежит в пределах от 15-20 до 200-500. Следовательно, вызывая каким-то способом изменения тока в цепи базы транзистора, можно получить в десятки и даже в сотни раз большие изменения тока в цепи коллектора.

Используя параметр , связь между током коллектора и током базы , можно приближенно записать в виде

. (46.3)

При включении транзистора по схеме, представленной на рисунке 162 (схема с общим эмиттером), отношение изменения тока коллектора к изменению тока базы является отношением изменения выходного тока к изменению входного тока . Это отношение называется коэффициентом усиления по току :

(46.4)

Рис. 162

Так как параметр у транзистора может иметь значения от ∼20 до ∼500, электрическая схема с использованием одного транзистора может усиливать электрические сигналы по току в десятки и даже сотни раз.

Для усиления сигнала по напряжению в цепь коллектора должен быть включен резистор , значение электрического сопротивления которого должно быть рассчитано для каждого конкретного случая.

Изменение тока коллектора на некоторую величину приводит к изменению напряжения между выходными клеммами на величину

. (46.6)

Отношение этого изменения напряжения на выходе транзистора к вызвавшему его изменению напряжения на входе называется коэффициентом усиления каскада по напряжению :

(46.5)

Входное сопротивление транзистора, включенного по схеме с общим эмиттером, обычно составляет несколько сотен Ом. Коэффициент усиления транзисторного каскада по напряжению при условии может превышать значение коэффициента усиления по току .

В качестве усилительных элементов транзисторы широко применяются в радиоприемниках, телевизорах, магнитофонах.

Изменением знака напряжения, подаваемого между базой и эмиттером, можно включать и выключать ток, протекающий через коллекторный вывод транзистора. В качестве бесконтактных переключательных элементов транзисторы используются в различных приборах автоматического управления, электронных вычислительных машинах.

Микроэлектроника. Качественно новый этап развития электронной вычислительной техники, систем связи, автоматики наступил в результате развития нового раздела электроники - микроэлектроники.

Микроэлектроника занимается разработкой интегральных микросхем и принципов их применения. Интегральной микросхемой называют совокупность большого числа взаимосвязанных компонентов - транзисторов, диодов, резисторов, конденсаторов, соединительных проводов, изготовленных в едином технологическом процессе.

При изготовлении интегральной схемы на пластинку из полупроводникового материала наносятся последовательно слои примесей, диэлектриков, напыляются слои металла. Для каждого нового слоя используется своя технология нанесения и свой рисунок расположения деталей. В результате на одном кристалле одновременно создается несколько тысяч транзисторов, конденсаторов, резисторов и диодов, соединенных проводниками в определенную схему. Например, микросхема часов "Электроника" размещена на кремниевом кристалле толщиной 0,5 мм и размерами 4·3,6 мм. В этой микросхеме содержится около 3000 транзисторов. Размеры отдельных элементов микросхемы могут быть 2-5 мкм, погрешность при их нанесении не должна превышать 0,2 мкм.

Наиболее революционные изменения благодаря разработке микросхем произошли в области электронной вычислительной техники. Вместо ламповых ЭВМ, содержащих десятки тысяч ламп и занимавших несколько этажей здания, транзисторных ЭВМ, занимавших большую комнату, созданы компьютеры на интегральных схемах-микропроцессорах, размещающиеся на письменном столе. Микропроцессор современной ЭВМ, размещенный на кристалле кремния размером 6·6 мм, содержит несколько десятков или даже сотен тысяч транзисторов.

Применение микропроцессоров привело к тому, что скорость вычислений на ЭВМ за 25 лет выросла примерно в 200 раз, а потребление электроэнергии ЭВМ уменьшилось в 10000 раз.

⇦ Ctrl предыдущая страница / следующая страница Ctrl ⇨

МЕНЮ САЙТА / СОДЕРЖАНИЕ 

cartalana.comⒸ 2009-2025 контакт: cartalana@cartalana. com